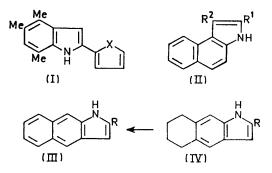
Carcinogenic Nitrogen Compounds. Part LXXXII.¹ Polycyclic Indoles by Means of the Möhlau–Bischler Synthesis

By P. Bigot, G. Saint-Ruf,* and (the late) N. P. Buu-Hoï, † Centre Marcel Délépine du C.N.R.S., 45-Orléans-La Source, France


A modified technique for the Möhlau-Bischler indole synthesis gave access to a number of polycyclic indoles. among them derivatives of benzo [f] indole and phenaleno [1,9-fg] indole, which are potential carcinogens and/or leukaemogens.

WE have recently shown² that the Möhlau-Bischler synthesis (*i.e.* cyclisation of ω -arylamino-ketones in the presence of arylamine salts) is an excellent preparative route to 2-arylindoles. This reaction has now been used for the preparation of a number of new polysubstituted indoles and polynuclear indoles which are of interest as potential carcinogenic and/or leukaemogenic substances; indole itself and some of its more simple substituted derivatives are known to induce leukaemia in rodents.3

Since the Möhlau-Bischler method does not involve the use of metal halides as catalysts, the introduction of fragile heteroaromatic substituents presented no problems: thus, the 2-furyl (I; X = O) and 2-thienyl (I; X = S) derivatives of 4,5,7-trimethylindole were easily obtained from 2,4,5-trimethylaniline (pseudocumidine)

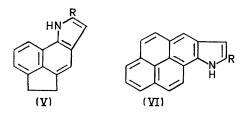
¹ Part LXXXI, D. C. Thang, C. X. Can, N. P. Buu-Hoï, and P. Jacquignon, J.C.S. Perkin I, 1972, 1932.

and the appropriate ω -bromo-ketone, and the corresponding 2-pyridyl derivative was prepared similarly.

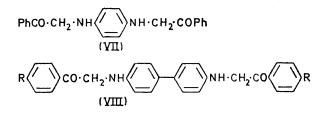
A further advantage of the Möhlau-Bischler cyclisation is that there is no risk of isomerisation through methyl

- ² N. P. Buu-Hoi, G. Saint-Ruf, D. Deschamps, and P. Bigot, J. Chem. Soc. (C), 1971, 2606. ³ A. Lacassagne, N. P. Buu-Hoï, F. Zajdela, and N. D.
- Xuong, Bull. Cancer, 1955, 42, 3.

[†] Deceased, 28th January, 1972.


displacement, as demonstrated by analysis of the n.m.r. spectral data of a number of indoles derived from pseudocumidine; all the spectra showed a signal ($\tau 3.18 - 3.28$) corresponding to the 6-proton shielded by the two adjacent methyl groups.

 α -Arylaminodeoxybenzoins 4 proved particularly prone to indolisation; 4,5,7-trimethyl-2,3-diphenylindole and 1,2-diphenyl-3*H*-benz[*e*]indole (II; $R^1 = R^2 = Ph$) were furnished in excellent yield.⁵ Other derivatives of 3H-benz[e]indole were prepared; the properties of the 2-phenyl derivative (m.p. 175°) differed considerably from those indicated in the literature.⁶ A route to derivatives of 1*H*-benz[f] indole (III; R = H) involved use of 6-aminotetralin in Möhlau-Bischler syntheses; cyclisation of the ω -amino-ketones derived from this amine takes place at position 7 and thus gives substituted 5,6,7,8-tetrahydro-1*H*-benz[f] indoles (IV), which are then dehydrogenated to (III). Proof of the linear structure of these compounds was provided by the fact that the 2-phenyl derivative (III; R = Ph), m.p. 260°, displayed different physico-chemical properties from those of 2-phenyl-3H-benz[e]indole; furthermore, all the derivatives (IV) showed an intense i.r. absorption band in the 800-850 cm⁻¹ region, characteristic of a 1,2,4,5tetrasubstituted benzene and hence of the absence of ortho-related protons.7


The Möhlau-Bischler synthesis was also successfully

[1,7-fg]indoles (V) and 8-aryl-9H-phenaleno[1,9-fg]indoles (VI). Compounds (VI) are particularly interesting in view of their close structural relationship with benzo-[a] pyrene, one of the most potent carcinogens known.

Whilst aromatic diamines such as p-diaminobenzene and benzidine could be easily cyclised to the corre-

sponding ω-amino-ketones (VII) and (VIII), similar cyclisation of these last compounds furnished only

.

TABLE 1

ω-Arylamino-ketones,^a ArNH·CHR·COAr'

Substituents					Found (%)			Rec	Requires (%)		
Ar	Ar'	R	M.p. (°C)	Formula	С	н	Ν	С	н	Ν	
2,4-Xylyl	\mathbf{Ph}	\mathbf{Ph}	125	$C_{22}H_{21}NO$	83.5	6.7	$4 \cdot 2$	83.7	6.7	4.4	
3,4-Xylyl	\mathbf{Ph}	\mathbf{Ph}	126	$C_{22}H_{21}NO$	83.5	6.7	$4 \cdot 2$	83.7	6.7	4.4	
3,5-Xylyl	\mathbf{Ph}	\mathbf{Ph}	134	$C_{22}H_{21}NO$	83.6	6.7	$4 \cdot 2$	83 ·7	6.7	4.4	
2,3-Xylyl	\mathbf{Ph}	\mathbf{Ph}	115	$C_{22}H_{21}NO$	83.7	6.7	$4 \cdot 2$	83.7	6.7	4.4	
$2, 4, 5 - Me_{3}C_{6}H_{2}$	Ph	\mathbf{Ph}	138	C ₂₃ H ₂₃ NO	83.8	$7 \cdot 0$	$4 \cdot 0$	83.8	7.0	$4 \cdot 2$	
2-Naphthyl	\mathbf{Ph}	н	155	$C_{18}H_{15}NO$	82.8	5.9	5.6	82.7	5.8	5.4	
2-Naphthyl	ClC_6H_4	н	194	$C_{18}H_{14}CINO$	$72 \cdot 9$	$5 \cdot 0$	4 ·9	$73 \cdot 1$	4 ·8	4.7	
2-Naphthyl	Biphenyl-4-yl	н	190	$C_{24}H_{19}NO$	$85 \cdot 4$	5.9	$4 \cdot 0$	85.4	5.7	4·1	
5,6,7,8-Tetrahydro-2-naphthyl	Ph	н	135	$C_{18}H_{19}NO$	81.3	7.1	5.4	81.5	$7 \cdot 2$	$5 \cdot 3$	
5,6,7,8-Tetrahydro-2-naphthyl	\mathbf{Ph}	Ph 🎙	130	C ₂₄ H ₂₃ NO	84·4	6.9	3.9	84·4	6.8	4 ·1	
5,6,7,8-Tetrahydro-2-naphthyl	Biphenyl-4-yl	н	120	C ₂₄ H ₂₃ NO	84.3	6.9	3.9	84·4	6.8	4.1	
5,6,7,8-Tetrahydro-2-naphthyl	p-ĈlC ₆ H₄	H	140	C ₁₈ H ₁₈ ClNO	71.9	6.0	4.6	$72 \cdot 1$	6.0	4.7	
5-Acenaphthyl	Ph	н	164	C ₂₀ H ₁₇ NO	83.5	6·0	5.0	83.6	6.0	$4 \cdot 9$	
5-Acenaphthyl	\mathbf{Ph}	Me °	153	C ₂₁ H ₁₇ NO	83.6	6.4	4 ·6	83 ·7	6.3	4 ·6	
5-Acenaphthyl	p-ClC ₆ H ₄	H &	175	C ₂₀ H ₁₆ ClNO	74·7	$5 \cdot 1$	4.1	74.6	$5 \cdot 0$	4.3	
5-Acenaphthyl	2-Naphthyl	H٥	173	$C_{24}H_{19}NO$	$85 \cdot 2$	5.8	4.1	$85 \cdot 4$	5.7	$4 \cdot 2$	
5-Acenaphthyl	Biphenyl-4-yl	ΗÞ	188	$C_{26}H_{21}NO$	85.9	5.8	$3 \cdot 6$	85.9	5.8	$3 \cdot 8$	
5-Acenaphthyl	Indan-5-yl	H٥	178	$C_{23}H_{21}NO$	$84 \cdot 2$	6.5	4 ·1	84.4	6.5	$4 \cdot 3$	
5-Acenaphthyl	p-MeO·C ₆ H ₄	H۵	145	$C_{21}H_{19}NO_2$	79 ·3	6.0	$4 \cdot 2$	79.5	6·0	4.4	
5-Acenaphthyl	2-Thienyl	Ηø	150	C ₁₈ H ₁₅ NOS	73.6	$5 \cdot 2$	4.5	73.7	$5 \cdot 1$	4.7	
Pyren-1-yl	Ph	H٥	162	C ₉₄ H ₁₇ NO	85.8	$5 \cdot 3$	4.0	85.9	$5 \cdot 1$	4.2	
Pyren-1-yl	p-ClC ₆ H ₄	H٥	186	C ₂₄ H ₁₆ CINO			3.7			$3 \cdot 8$	

^a Pale yellow needles, from ethanol or ethanol-benzene.

applied to the cyclisation of ω -arylamino-ketones derived from 5-aminoacenaphthene and 1-aminopyrene,

leading, respectively, to 8-aryl-5,9-dihydro-4H-indeno-

⁶ W. H. Ince, Annalen, 1889, 253, 35.

^b From benzene. ^c From methanol. ^d From propanol.

unidentified polymerisation products. Nevertheless, the many examples of the formation of indoles reported here show, in line with our earlier observations,² that the

⁷ Cf., L. J. Bellamy, 'The Infrared Spectra of Complex Molecules,'Methuen, London, 1958; R. N. Jones and C. Sandorfy, in 'Techniques of Organic Chemistry,' ed. A. Weissberger, Interscience, New York, 1956, vol. IX; D. G. O'Sullivan, Characteristic defendence of 27 279 Spectrochim. Acta, 1960, 16, 762.

⁴ Cf. R. C. Elderfield, 'Heterocyclic Compounds,' Wiley, New York, 1952, vol. 3, p. 3.
⁵ A. Bischler and P. Fireman, Ber., 1893, 26, 1346.

Möhlau–Bischler synthesis is far superior to that of Fischer for the preparation of polycyclic 2-arylindoles.

EXPERIMENTAL

I.r. absorption spectra were determined for potassium bromide discs with a Perkin-Elmer (model 457) spectrowas cooled and the precipitate was washed with water and recrystallised from ethanol, ethanol-benzene, or benzene; yields 60-85% (see Table 1).

Möhlau–Bischler Cyclisation.—We used our modified technique,² the cyclisation being performed in an inert liquid (silicone oil), which avoids thermal decomposition of the ω -amino-ketones and gives higher yields of indoles. An

TABLE 2Polysubstituted indoles

			F	'o u nd (%)		Re	equires (%	5)
Indoles •	M.p. (°C)	Formula	С	н	Ν	С	н	Ν
5,7-Dimethyl-2,3-diphenyl-	152	$C_{22}H_{19}N$	88.6	6.5	4.5	88.8	6.4	4.7
Picrate	163	$C_{28}H_{22}N_4O_7$	63.8	4.3	10.5	63.8	$4 \cdot 2$	10.6
4,7-Dimethyl-2,3-diphenyl-	135	$C_{22}H_{19}N$	88.8	6.5	4.5	88.8	6.4	4.7
Picrate	142	$C_{28}H_{22}N_4O_7$	63.5	4.4	10.9	63.8	$4 \cdot 2$	10.6
5,6-Dimethyl-2,3-diphenyl-	155	$C_{22}H_{19}N$	88.5	6.5	4.5	88.8	6.4	4.7
Picrate	160	$C_{28}H_{22}N_4O_7$	63.7	$4 \cdot 2$	10.3	63.8	$4 \cdot 2$	10.6
4,5-Dimethyl-2,3-diphenyl-	135	$C_{22}H_{19}N$	88.5	6.4	4.6	88.8	6.4	4.7
6,7-Dimethyl-2,3-diphenyl-	145	$C_{22}H_{19}N$	88.8	4.6	4.6	88.8	6.4	4.7
Picrate	167	$C_{28}H_{22}N_4O_7$	63.5	4.4	10.8	63.8	$4 \cdot 2$	10.6
4,5,7-Trimethyl-2,3-diphenyl-	170	$C_{23}H_{21}N$	88.5	6.9	$4 \cdot 3$	88·7	6.8	4.5

 Recrystallised from ethanol, aqueous ethanol, or hexane, as colourless leaflets or prisms. Picrates crystallised from ethanol, as brown needles.

TABLE 3

Polycyclic indoles^a

2 01 / 0 / 0	2 019 09 0110 11140100			Equal $(0/)$			Bogwiron (9/)		
	M.p.		Found (%)			Requires (%)			
	(°Ĉ)	Formula	С	\mathbf{H}	Ν	С	н	N	
2-Phenyl-3H-benz[e]indole (II; $R^1 = Ph, R^2 = H$)	175	$C_{18}H_{19}N$	89.0	5.5	5.6	88.8	5.4	5.7	
$2-(p-\text{Chlorophenyl})-3\text{H-benz}[e]\text{indole (II; } R^1 = p-\text{ClC}_6\text{H}_4,$	159	$C_{18}H_{12}CIN$	78.0	4.5	4.9	77.8	4.4		
$\frac{1}{R^2 = H}$	100	018112011	10 0	Ŧ 0	Ŧ 0		1 1	00	
2-(Biphenyl-4-yl)-3H-benz[e]indole (II; $R^1 = p - C_6 H_5 \cdot C_6 H_4$,	245	$\rm C_{24}H_{17}N$	89.9	5.5	4.5	90.2	5.4	4.4	
$R^2 = H$	0.01	0 11 11		# 0	~ 0	0		~ -	
5,6,7,8-Tetrahydro-2-phenyl-1 <i>H</i> -benz[f]indole (IV; R = Ph)	201	$C_{18}H_{17}N$	87.2	7.0	5.6	87.4	6.9	5.7	
$2-(p-\text{Chlorophenyl})-5, \hat{6}, 7, 8-\text{tetrahydro-1}H-\text{benz}[f]$ indole (IV;	276	$C_{18}H_{16}ClN$	76.6	5.8	4 ·8	76.7	5.7	4 ·9	
$\mathbf{R} = p - \mathrm{ClC}_{6} \mathbf{H}_{4})$									
2-(Biphenyl-4-yl)-5,6,7,8-tetrahydro-1H-benz[f]indole (IV;	305	$C_{24}H_{21}N$	89.3	6.5	4·1	89 ·1	6.5	$4 \cdot 3$	
$\mathbf{R} = p - \mathbf{C}_{6} \mathbf{H}_{5} \cdot \mathbf{C}_{6} \mathbf{H}_{4})$									
2-Phenyl- $\hat{I}H$ -benz[f]indole (III; $R = Ph$)	260	$C_{18}H_{13}N$	88.6	5.4	5.8	88.8	5.4	5.7	
5,9-Dihydro-8-phenyl-4H-indeno $[1,7-fg]$ indole (V; R = Ph)	164	$C_{20}^{10}H_{15}^{10}N$	89.1	5.6	5.0	89.2	5.6	5.2	
Picrate	201	$C_{26}H_{18}N_4O_7$	62.6	3.7	10.9	62.7	3.7	11.2	
8-(p-Chlorophenyl)-5,9-dihydro-4H-indeno[1,7-fg]indole (V;	190	$C_{20}H_{14}CIN$	78.9	4.8	4.5	79.1	4.6		
$R = p-ClC_{a}H_{a}$	100	02011140111	.00	10	10		10	10	
Picrate	185	C ₂₆ H ₁₇ ClN ₄ O ₇	58.3	3.2	10.3	58.6	3.9	10.5	
8-(β-Naphthyl)-5,9-dihydro-4H-indeno[1,7-fg]indole (V;	197	$C_{24}H_{17}N$	89.9	5.5	4.2	90·2	5.4		
$R = \beta$ -naphthyl)	197	C24111719	09.9	0.0	4.7	90.2	0.4	4.4	
Dipicrate	014	C II NO	~~ 0	0.1	10 5			10.0	
	214	$C_{36}H_{23}N_7O_{14}$	55.8	3.1		55.6		12.6	
8-(Biphenyl-4-yl)-5,9-dihydro-4H-indeno[1,7-fg]indole (V;	260	$C_{26}H_{19}N$	90·4	$5 \cdot 6$	$3 \cdot 8$	9 0 ·4	5.5	4 ·0	
$\mathbf{R} = p - C_6 \mathbf{H}_5 \cdot C_6 \mathbf{H}_4)$				~ ~			~ -		
Picrate	200	$C_{32}H_{22}N_4O_7$	66.6	3.9	9.8	66.8	3.7	9.7	
8-(Indan-5-yl)-5,9-dihydro-4H-indeno[1,7-fg]indole (V;	197	$C_{23}H_{19}N$	89.3	$6 \cdot 3$	4.4	89.3	$6 \cdot 2$	4.5	
R = indan-5-yl									
Picrate	185	$C_{29}H_{22}N_4O_7$	$64 \cdot 4$	$4 \cdot 3$	10.4	64·7	4·1	10.4	
8-(p-Methoxyphenyl)-5,9-dihydro-4H-indeno[1,7-fg]indole (V;	260	C ₂₁ H ₁₇ NO	83.9	5.8	4.5	84.2	5.7	4.7	
$\mathbf{R} = p \cdot \mathbf{M} \mathbf{e} \mathbf{O} \cdot \mathbf{C}_{\mathbf{a}} \mathbf{H}_{\mathbf{a}})$									
8-Phenyl-9H-phenaleno[1,9-fg]indole (VI; $R = Ph$)	285	$C_{24}H_{15}N$	91.2	4.7	$4 \cdot 2$	91·4	4.5	4.4	
8-(p-Chlorophenyl)-9H-phenaleno[1,9-fg]indole (VI;	250	$C_{24}H_{14}CIN$	82.2	4 .0	3.8	82.4	4 .0	$\overline{4}\cdot\overline{0}$	
$R = p - ClC_{s}H_{4})$	(decomp.)	24-14		- 0	00	04 1	- 0	10	
r (6**4)	(accomp.)								

• Recrystallised from cyclohexane, benzene, or ethanol-benzene, as colourless leaflets or prisms. Picrates or dipicrates crystallised from ethanol or ethanol-benzene as brown needles.

meter; n.m.r. data were determined for solutions in $[^{2}H]$ chloroform (internal reference, tetramethylsilane) with a Perkin-Elmer R-12 spectrometer.

Preparation of ω -Arylamino-ketones.—An ethanolic solution of equimolar amounts of the arylamine and the appropriate ω -bromo-ketone was heated under reflux for 4 h with hydrogen sodium carbonate in slight excess. The solution

intimate mixture of the ω -arylamino-ketone, the appropriate arylamine (2 mol. equiv.) and its hydrobromide (0.05 mol. equiv.) in silicone oil was heated at 230—250° for 10—15 min. The mixture was cooled and the product was washed with hexane and recrystallised from ethanol, benzene, or chlorobenzene; yields 35—80% (see Tables 2 and 3). 2-Phenyl-1H-benz[f]indole (III; R = Ph).—Heating 5,6,7,8-tetrahydro-2-phenyl-1H-benz[f]indole (IV; R = H), followed by sublimation in vacuo over 5% palladium-charcoal and recrystallisation from benzene, furnished the indole (III), m.p. 260° (see Table 3).

The new indoles described are currently undergoing tests

for carcinogenic and zoxazolamine hydroxylase-inducing activities; results will be reported elsewhere.

We thank the Ligue française contre le Cancer for a Fellowship (to P. B.), and the S.E.I.T.A. for support.

[2/1075 Received, 11th May, 1972]